

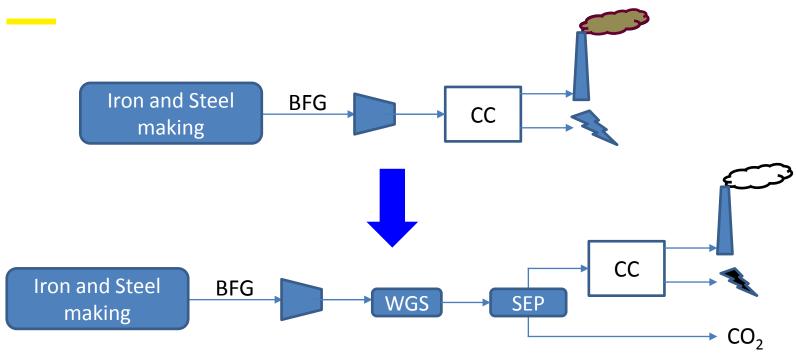
Eric van Dijk

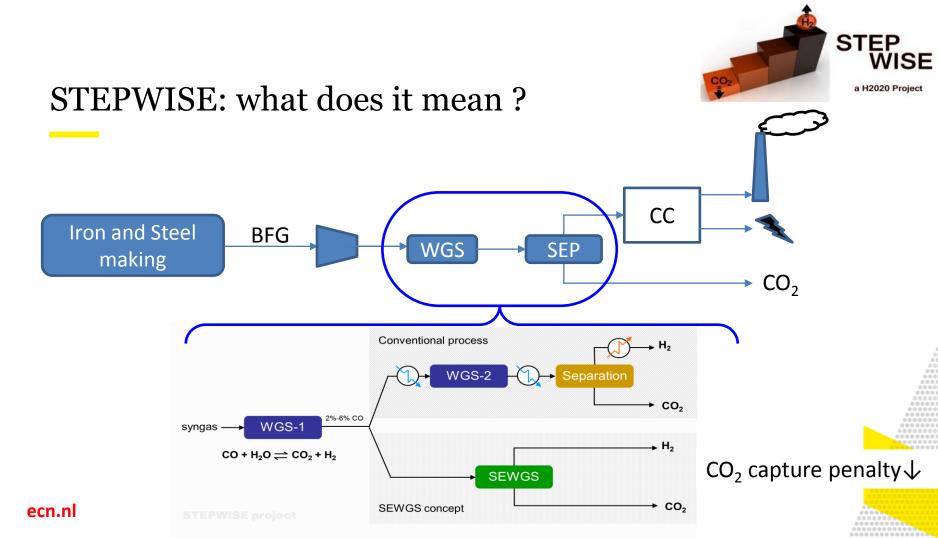
Energy Research Center of the Netherlands

Contents

- Why are you here?
- STEPWISE: what does it mean?
- How did we get here?
- Who is involved?

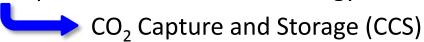
What next?




STEPWISE: project data

EU Funding program :	HORIZON 2020, LCE-15-2014
Grant agreement reference :	No. 640769
Project duration :	1 May 2015 – 31 April 2019
Estimated project total cost :	20 M€
EU contribution :	13 M€
Consortium:	9 parties from 5 member states
Coordinating entity:	ECN, Westerduinweg 3, 1755ZG Petten, The Netherlands
Coordinator :	H.A.J. van Dijk, +31–88 515 4259, h.vandijk@ecn.nl
Project web site :	www.stepwise.eu

STEPWISE: what does it mean?



STEPWISE: what does it mean?

Iron & Steel: No easy incorporation of renewable energy

STEPWISE : Cost effective CO₂ capture

Maintain competitiveness of the Iron & Steel industry and secure jobs

Commercial process

Idea

Time

EU project **STEPWISE** 2017 **NL** project 2015 CATO II Validation of process Validation of Bench scale 2011 materials testing **EU project NL** project 2008 **CAESAR NL** project **CAPTECH CATO EU project** 2004 **CACHET** 2006 2002 Proof of 1st lab Feasibility experiment

2018-2020

SEWGS Plant 1

2015-2019

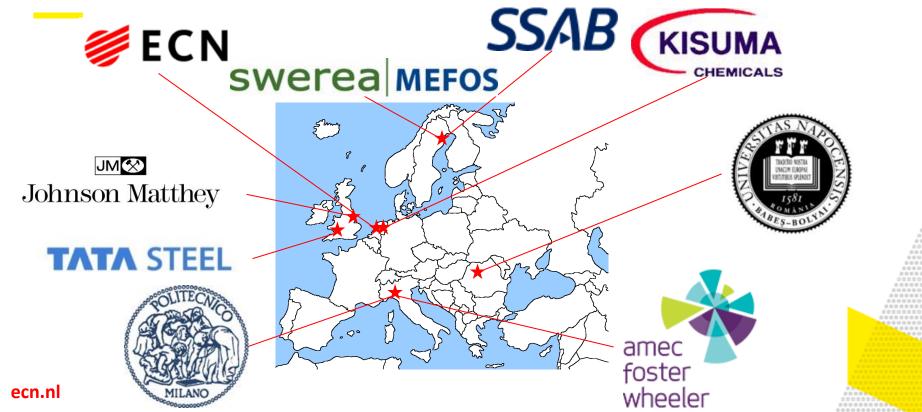
STEPWISE demo

Time

First step material

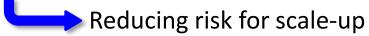
1st experiment __ 20 November 2002

		D51 ▼ (e)	ge Layout	Formulas								
⊿	Α	В	С	D	Е	F	G	Н	T.	J	K	Т
1	Ove	rzicht metingen project	7.2560 (2002	2) 7.2829 (200	3)							ger
2											capaciteit	des
3	exp	meetfile	kat	adsorptie in:	T ads/des	ingewogen	na meting	verlies		CO2	CO2	opp
ı							(gram)	(%)	(ml)	(mi)	(mmol/gram)	
		m5021120-4	kHTC-1.1	67%CO2	400°C	2.9995	2.3557	21.5	246.91	18.26	0.32	2
6			kHTC-2.7	67%CO2	400°C	2.9980	2.2427	25.2			0.09	
7		m5021121-2	kHTC-2.7	67%CO2	500°C	3.0032	2.1702	27.7			0.50)
3	329	m5021126	SiC	67%CO2	400°C en				265.17			
)					500°C				266.90			
		m5021127-1	kHTC-1.1	67%CO2	400°C	3.0010	2.3436	21.9	246.56		0.32	
1		m5021127-2	kHTC-1.9	67%CO2	400°C	3.0000	2.2441	25.2			0.62	
2			kHTC-1.9	67%CO2	500°C	3.0003	2.1585	28.1		27.91	0.53	
		m5021202 vastgelopen!		67%CO2	400°C	3.0003	2.2011	26.6				
4		m5021204	kHTC-2.7	5%CO2	400°C	2.9995	2.1949	26.8			0.31	i .
		m5021205-1		5%CO2	400°C				109.33			
			kHTC-2.7	67%CO2	400°C	2.9999	2.2036	26.5				
		NB: Bij deze meting is d	e 1e adsorptie	e beter omdat	er nog een							
		1				2.9999	2.2036				0.73	
		2				2.9999	2.2036					
		3				2.9999	2.2036					
		4				2.9999	2.2036					
						2.9999	2.2036					



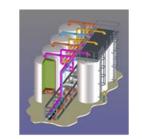
Next steps

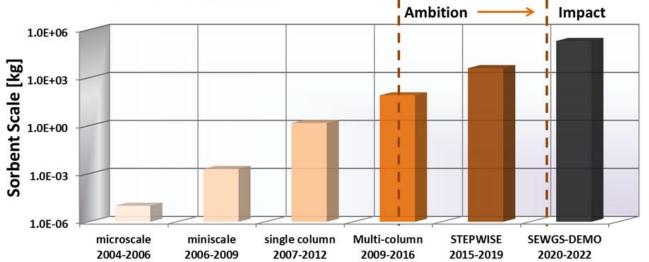
		Major Innovations
•	2004 - First experimental feasibility	, 000
•	2005 – First systems analysis	
•	2006 - High Pressure Single-Column Unit	Sorbent Stability
•	2007 – SEWGS for gasification	
•	2008 – Multi-Column Unit	H ₂ S Recovery
•	2010 – Process Improvements	2
•	2011 - New sorbent class	Shift Activity
	boosting performance by 100%	
•	2012 - Techno-economic evaluation	Stress Test
	 35% lower that base-case state-of-the-art system IGCC 	
•	2014 - Further reduction in steam demand	Low steam demand WGS
	 New cycles for Blast Furnace Gas 	
•	2015 - Industrial Scale Production of Sorbent	Pilot Scale Demonstration
•	2016 - Start construction pilot plant 800 Nm ³ /hr	


STEPWISE: Who is involved?

What next?

- STEPWISE project : filling reactors and start demonstration
- SEWGS-technology : TRL6 demonstration





What next?

